《完全平方公式》教学设计

时间:2025-11-29 12:24:17
《完全平方公式》教学设计

《完全平方公式》教学设计

作为一名优秀的教育工作者,通常需要准备好一份教学设计,教学设计是一个系统化规划教学系统的过程。我们该怎么去写教学设计呢?以下是小编收集整理的《完全平方公式》教学设计,欢迎阅读与收藏。

《完全平方公式》教学设计1

一、学生起点分析

学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。

学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。

二、教学任务分析

教科书在学生已经学习了整式的加法、乘法,以及平方差公式的基础上,提出了本课的具体学习任务:经历探索完全平方公式的过程,并能运用公式进行简单的计算。但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标。整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。为此,本节课的教学目标是:

1.经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2.体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

3.了解完全平方公式的几何背景,培养学生的数形结合意识。

4.在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

三、教学设计分析

本节课设计了七个教学环节:回顾与思考、情境引入、初识完全平方公式、再识完全平方公式、又识完全平方公式、课堂小结、布置作业。

第一环节回顾与思考

活动内容:复习已学过的平方差公式

1.平方差公式:(a+b)(a-b)=a-b;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。右边是两数的平方差。

2.应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

活动目的:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小1组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力。而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要。

实际教学效果:在复习过程中,学生能够顺利地回答出平方差公式的内容,而对于其结构特点及应用时的注意事项,通过学生之间的'相互补充,绝大多数学生也得以掌握。在复习中既把旧知识得以复习,同时学生也会主动的去回顾平方差公式一节的学习过程,从而为本节课的类比学习奠定了基础。

第二环节情境引入

活动内容:出示幻灯片,提出问题。

一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

活动目的:数学源自于生活,通过生活当中的一个实际问题,引入本节课的学习。从而在学生运用旧知计算和比较实验田的面积当中引出完全平方公式。由于实验田的总面积有多种表示方式,通过对比这些表示方式可以使学生对于公式有一个直观的认识。同时在古代人们也是通过类似的图形认识了这个公式。在列代数式解决问题的过程当中,通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发。

实际教学效果:问题提出后,学生能够主动地去寻找解决问题的方法。同时问题要求用不同的形式来表示总面积,这就要求学生从不同的角度来进行考虑,从而对于学生的思维提出了挑战。不过由于前面列代数式一部分内容的学习,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识。从而在学生的自主探索过程中引出了完全平方公式,使学生有了一个直观认识。在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽。

第三环节初识完全平方公式

活动内容:1.通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a-b)2=a2-2ab+b2.2.引导学生利用几何图形来验证两数差的完全平方公式。

3.分析完全平方公式的结构特点,并用语言来描述完全平方公式。

结构特点:左边是二项式(两数和(差))的平方;

右边是两数的平方和加上(减去)这两数乘积的两倍。

语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。

活动目的:第一个活动是让学生在上面讨论的基础上,从代数运算的角度运用多项式的乘法法则,推导出两数和的完全平方公式,并且进一步推导出两数差的完全平方公式。在教学中学生有条理的思考和语言表达能力得以培养。

第二个活动使学生再次从几何的角度来验证两数差的完全平方公式。从而学生经历了几何解释到代数运算,再到几何解释的过程,学生的数形结合意识得以培养,并且从不同的角度推导出了公式,并且加以巩固。

第三个活动在前面的基础上,加以总结,使得学生从形式上初步地认识了完全平方公式。实际教学效果:此环节的设计符合学生的认知水平和认知过程。在第一个活动的教学中2应重视学生对于算理的理解,让学生尝试说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力。在第二个活动中既是对于第二环节用几何解释验证两数和的完全平方公式的巩固,同时也是对于学生数形结合意识的一种培养,绝大多数学生能够通过交流合作得以掌握。通过几个活动学生能够初步地掌握了完全平方公式,并在推导过程中培养了数学的基本能力。

第四环节再识完全平方公式

活动内容:例1用完全平方公式计算:

(1)(2x3)2;

(2)(4x+5y)2;

(3)(mna)22.总结口诀:首平方,尾平方,两倍乘积放中央。 ……此处隐藏7697个字……数为:

四、自学任务(分层)与方法指导:1、养牛场原有30只大牛和15只小牛,1天约用饲料675kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg,饲养员李大叔估计每只大牛1天约需饲料18~20 kg,每只小牛1天约需饲料7~8 kg,你能否通过计算检验他的估计?

分析:设每只大牛和每只小牛1天各约用饲料kg和kg,根据两种情况的饲料用量,找出相等关系,列方程组,解这个方程组,得,这就是说,每只大牛1天需饲料kg,每只小牛1天约需饲料kg。因此,饲养员李大叔对大牛的。食量估计,对小牛的食量估计。

2、利用二元一次方程组解可设个未知数,必须找到个与所设未知数相关的等量关系。这几个等量关系必须具备两条件:

○1:;○2:。

3、课本中探究1的情景里的每只大牛和小牛估计,所需的饲料量其实是一个数。

五、小组合作探究问题与拓展:1、在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴,村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351元,又知B型洗衣机售价比A型洗衣机售价多500元。

求:(1)A型洗衣机和B型洗衣机的售价各是多少元?

(1)小李和小王购买洗衣机除财政补贴外实际各付款多少元?

六、自学与合作学习中产生的问题及记录

当堂检测题

1、某校运动员分组训练,若每组7人余3人,若每组8人,则缺5人,设运动员人数为人,组数为组,则列方程组()

A、B、C、D、

2、某地区“退耕还林”后,耕地面积和林地面积共180平方千米,耕地面积是林地面积的25%,设耕地面积为平方千米,林地面积为平方千米,根据题意,可得方程组

A、B、C、D、

3、某人身上只有2元和5元两种纸币,他买一件物品需支付27元,则付款的`方法有()

A、1种B、2种C、3种D、4种

4、古代有这样一个寓言故事,驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是()

A、5 B、6 C、7 D、8

5、某同学买了枚1元邮票与枚2元邮票共12枚,花了20元钱,求1元的邮票与2元的邮票各买了多少张?那么适合的方程组为()

A、B、C、D、

《完全平方公式》教学设计9

公式

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式.

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题.

2.使学生理解公式与代数式的关系.

(二)能力训练点

1.利用数学公式解决实际问题的能力.

2.利用已知的公式推导新公式的能力.

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践.

(四)美育渗透点

数学公式是用简洁的'数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式.

2.难点:同重点.

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

板书:公式

师:小学里学过哪些面积公式?

板书:S=ah

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

《《完全平方公式》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式