
五年级数学教学设计
作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是一个系统化规划教学系统的过程。写教学设计需要注意哪些格式呢?下面是小编收集整理的五年级数学教学设计,仅供参考,希望能够帮助到大家。
五年级数学教学设计1教材分析:
教材中呈现了两个问题,经过比较我们不难发现,这两个问题的共同点是都把分,第(1)题是平均分成2份,第(2)题是平均分3份,第(1)题的算式是除数的分子是能被除数整除的,而第(2)题的算式是4平均74 ÷2,被74 ÷3,被除数的分子是不能被37整除的。无论哪种方法,目的只有一个,就是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。
学情分析:
这部分内容在学习,是在学生学习了分数乘法和认识了倒数在基础上进行的。学生之前掌握了分数乘分数的计算方法,为本单元在新知识起到了良好在铺垫作用。学生对倒数在认识,为分数除法中“除以一个数(0除外)等于乘这个数在倒数”的应用打下了基础。
教学方法:
学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义,解决有关分数除法的问题,从而理解分数除法的意义,并从中总结分数除以整数的计算方法。
教学内容:
教科书第55—56页,涂一涂、算一算及想一想、填一填和课后试一试
教学目的:
1、在涂一涂、算一算等活动中,探索理解分数除法的意义。
2、探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。
4、培养学生的动手能力和发散思维能力。
教具准备:
长方形纸不同颜色彩笔几支幻灯片
课时安排:2课时
第一课时
教学过程:
一、复习旧知
1、什么是倒数?(乘积为1的两个数互为倒数)
2、你能举出几个例子吗?
3、如何求一个数的倒数?(求一个数的倒数时,用1去除以这个数。如果求一个整数的倒数,直接写成这个整数分之一即可;如果求一个分数的倒数,就是把这个分数的分子和分母互换;如果求一个小数的倒数,要将这个小数先化成分数再求;如果求一个带分数的倒数,应先将其化成假分数再求倒数。)
二、算一算
笑笑和淘气去买白糖。
问题1:他们每人买了两袋白糖,一共买了多少袋白糖?(2×2=4袋)
问题2:这些白糖一共重2千克,每袋白糖有多重?(2÷4=1/2千克)
问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?(1/2÷15=?千克)
三、探究新知
师:我们怎么解决问题3的困难呢?这就是我们今天学习的内容——除数是整数的分数除法。[板书课题:分数除法(一)]
1、出示情境图问题:把一张纸的平均分成2份,每份是这张纸的几分之几?
师:观察屏幕上的图,想一想:是把哪一部分平均分成2份?每份是多少?在准备的长方形纸条上用自己喜欢的方法折一折,涂一涂。
学生活动,师巡视。
组织交流:通过画图,你发现了什么?
生:4里面有四个1/7,平均分成两份,是两个1/7,就是2/7。 74 ÷2嘛?7
师:能用一个算式表示出涂色的过程吗?(板书算式)
师:想一想,如果不看图,你会计算
你能说说你的'大胆猜想嘛?(分母不变。被除数的分子除以整数得到商的分子)
2、师:大胆的猜想是一种非常好的数学思考方法,但还要经过科学的验证。我们来看看大家的猜想能不能也解决这一题呢?
课件出示:把一张纸的平均分成3份,每份是这张纸的几分之几?(板书算式)
师:看来我们要换一种思维方式探索一种能普遍运用的方法。把这4份平均分成3份,每份是这张纸的几分之几呢?请同学们动手在纸上分一分,涂一涂,涂好后和同桌交流一下怎样分。
学生活动,师巡视
组织交流:通过画图,你发现了什么?4平均分成3份,每份就是这张纸的4/21。 744生2:把平均分成3份,这其中的一份实际上就是的几分之几?77生1:
师:我们之前说,求一个数的几分之几可以用乘法!对照这两道算式,你有什么想法吗?
师:把44平均分成3份,就相当于求的1/3,结果都是4/21,因此中间我们可以用等号连77起来。你们看,原来的除法算式就转化成什么算式?什么变了?什么没变?这样有什么用?
生:被除数没变,除号改成了乘号(板书),除数3改成了3的倒数1/3 。
(设计意图:学生运用画图或者分数的意义来解决问题,体会画图策略,锻炼学生解决问题的能力。)
提问:同样的平均分成5份,每份实际上是44的几分之几?分成6份,每份实际上是的77几分之几?(板书算式)
师:同学们真棒!会把新知识转化成旧知识来解决,以旧学新是我们数学学习的一个重要方法。
师:现在大家会计算刚才我们上课一开始的这道题了吗?我们一起算一算。
四、巩固练习
师:下面,我们就运用我们掌握的计算方法来完成教材上第56页的“练一练”2学生独立完成,全班交流。说一说你这节课的收获。
(设计意图:让学生计算后,观察得出结论,并进行归纳,发现规律,注意了知识胡迁移)小结:这就是分数除以整数的常用方法,谁来说一说这种算法是怎样的?那么0能不能做除数呢?所以,这里还要不上一个条件(0除外)
五、作业设计
课件出示练一练
(设计意图:让学生学会灵活运用计算规律:做分数乘法时,可以先约分再计算或者先计算再约分。)
六、板书设计
五年级数学教学设计2【课前思考】
“找次品”是人教版教材五年级下册(数学广角)的内容,旨在通过“找次品”渗透优化思想,培养推理能力,让学生葱粉感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。教材以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理等方式体会运用优化策略解决问题的有效性,感受数学的魅力。
“找次品”问题是学生从未接触过的、需要重新建构的内容,学生会有新鲜感和探索求知的欲望。但对于大多数同学而言,它又是一个高难度的充满挑战的内容,因此部分同学在学习时会有一定的困难。
本课的教学内容比较多,学习这些内容需要比较高的思维水平。 ……此处隐藏21881个字……学生建立分类思想,进一步感受数学与生活之间的密切联系。
3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。
教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。
下面我就将本节课的教学过程及设计意图向大家做以汇报。
一、谈话导入:
同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)
对于这个游戏的玩儿法与经验,谁能向大家介绍一下?
其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)
【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】
二、认识并使用天平
教师介绍天平:
这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。
教师示范:
下面我们就一起来进行实际应用天平来测量一下。
首先我们来应用一下,检查一下砝码的质量是否准确。
在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。
看到天平,你会用等式表示天平两边物体的质量关系吗?
20+30=50
这有一个空的.水杯,我们先来测量一下它的重量。
请你估计一下它的重量。我们来试一试。
通过测量,我们得知,水杯的重量是100克。
现在我们缓缓向水杯里倒水,你发现天平怎么样了?
你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?
100+X>100
我们继续测量水的质量,同理得出:
100+X>200
100+X<300
100+X=250
这几个算式都以板书形式呈现。
【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】
三、认识方程
1、根据天平写算式并分类
刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。
【《20xx年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。
在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】
2、交流汇报:
学生边说,教师边板书:
等式 不等式
含有未知数 3x=180 50+2x>180
100+x=50x3 80<2x
不含未知数 50x2=100 100+20<100+30
根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。
反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?
【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】
四、应用概念
同学们,根据你对方程的理解,你能自己写出几个方程吗?
判断,他们写得都对吗?
黑板上刚才我们写得这些算式,有方程吗?
【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】
五、方程产生的文化背景
早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。
【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】
六、拓展延伸
在拓展延伸中,我设计了这样几个题目:
1、 根据线段图写方程
2、 根据数量关系写方程
3、 判断是否是方程
4、 方程与等式的关系
七、作业:
利用课余小组时间用天平测量物体的重量。
再想,天平两边可以如何添加,能使天平继续保持平衡呢?
【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】



