
三角形内角和教案
作为一无名无私奉献的教育工作者,常常要根据教学需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。我们该怎么去写教案呢?下面是小编为大家整理的三角形内角和教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
三角形内角和教案1教学内容:
课本第67页。
教学目标:
通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
通过量一量、剪一剪、拼一拼,培养学生合作能力、动手实践能力和运用新知识解决问题的能力。
使学生体验数学学习的乐趣,激发学生主动学习数学的兴趣。教学重点:探索发现和验证三角形内角和是180度。教学难点:对不同探究方法的指导和学生对规律的应用。教学准备:课件,三角形,量角器。教学
一、复习旧知,引出课题。谁能说说它们分别是什么三角形?
预设:锐角三角形,直角三角形,钝角三角形。
请一位同学分别标出这些三角形的角,其余的同学在自己准备的三角形中标角。独立完成,集体订正。
其实这些角是三角形的内角,谁能大胆猜一猜三角形内角和是多少度?预设:360°,180°,90°…….今天我们一起来探究三角形内角和。板书课题:三角形内角和
二、探究新知
1、小组合作。
课件展示:活动要求(1)4人一组,每人任选一个三角形用你的方法验证三角形内角和。
(2)小组交流各自的验证方法和验证结果,评选出较好的验证方法并说明理由。(3)每组选派一名同学汇报。
预设:我们组选用的是量角法,依次测量出三角形内角和是170°,185°,180°…哪一组和这一组验证方法不同?
预设:我们是把三角形的3个角剪下来拼在一起发现得到一个平角因此得知三角形内角和是180°。
你能把你拼的过程给大家说详细一些吗?
预设:选出一个角,再选出一个角使得它的一边与前一个角的'一边重合,剩下的角的一边和前一个角的另一条边重合,此时拼出一个平角因此三角形内角和是180°。
我发现你选用的是锐角三角形,那直角三角形,钝角三角形的内角和是怎样的?请同学们尝试用这种方法验证三角形内角和。
预设:直角三角形内角和是180°,钝角三角形内角和是180°。总结:通过撕(剪)拼法,我们验证任意三角形内角和是180°。
追问:同学们我有一个困惑刚才有部分同学通过测量角计算内角和为什么不是180°,问题出在哪里?
预设:测量角的方法不正确。预设:三角形做得不规范。
预设:测量过程中存在误差,导致不精确。
总结:撕(剪)拼法在验证三角形内角和精确性上优胜于量角法。还有没有同学想出不一样的验证方法呢?
预设1:课件展示折拼法,请一位同学说出具体的操作过程。剩下的同学仿照这种方法任选一个三角形验证三角形内角和。
预设2:同学上台展示操作过程,其余同学观察后并自行操作。
总结:
折拼法依然能验证任意三角形内角和是180°。看来解决数学问题的方法不是唯一的,希望同学们在今后的学习当中能多思,多想充分挖掘自己的聪明才智。
三、知识运用,巩固练习。
请同学们独立完成下题。(每题10分共100分。)
1、如图∠1=140°,∠3=25°,∠2=(°)。
2、一个直角三角形,一个锐角是50°,另一个锐角是(°)。
3、一个顶角是50°的等腰三角形的底角是(°)。
4、等边三角形每个角是(°)。
5、等腰直角三角形的一个底角是(°)。
6、在一个三角形中,∠A=90°,∠B+∠C=(°)。
7、一个三角形中,有一个角是65°,另外的两个角可能是(°)和(°)。
8、某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃,那么最省事的办法是带()去。为什么?
②③①
9、把下面这个三角形沿虚线剪成两个三角形,每个小三角形的内角和是多少度?
10、根据三角形内角和是180 °。你能求出下面四边形的内角和吗?
四、课后小结
请你谈谈本节课的收获。
五、板书设计
任意三角形内角和是180°。
三角形内角和教案2教学内容:
人教版义务教育课程标准试验教科书数学四年级下册第67页。
设计理念:
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
教材分析:
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的`思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180。
学情分析:
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道三角形的内角和是180度的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
教学目标:
1. 使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2. 使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
3. 使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识
三角形内角和 ……此处隐藏22474个字……方法能把三角形的三个内角合并在一起?预设4师:我在电脑里收索一个验证方法。(课件演示)
生:把三角形的三个角剪下来,再拼成一个角。
师:你能说的更明白一些吗?
让学生在实物投影上演示(可以把剪下来的三个角,用固体胶固定在白色的长方形卡纸上。)
师:你们觉得他得方法可行吗?
要求
请大家四人小组合作,用他的方法验证。
全班小组操作
大部分的小组已经拼好了,还没拼好的小组先停一停。我们一起来分享其他小组的验证结果
汇报交流
预设1师:(把学生的作品展示)把三个角拼在一起你们有什么发现?
(你能看出这是用什么三角形拼成的?为什么?三个角拼在一起你有什么发现?)
预设2让学生上来介绍
师:你怎么做?发现了什么?(课堂纪律)
让学生展示不同类型的三角形拼成一个平角。说明三角形的内角和是180°
(板书:剪拼一个平角)
课件演示
师:这种验证方法是谁第一个发现的,我们用掌声来祝贺他。
(2)折拼
师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?
预设1生:用折的方法
小组合作把剩下的`一个三角形的折成一个平角。
展示
师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。
课件演示
师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。
预设2学生不会想到用折的方法。
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)
5、计算,推理(看学生基础选用)
A、将一个长方形按对角线剪成两个完全一样的直角三角形。因为长方形的四个角都是直角,长方形的内角和是360°,所以剪成后的直角三角形的内角和是180°
(回家以后,同学们可以剪一个三角形折一折,我在信封里还为大家准备一个长方形彩色卡纸,如果将一个长方形剪成两个直角个三角形)
师:你发现了什么?
生:直角三角形的内角和是180°
师:你能说得更明白一些吗?
师:你能算出这个直角三角形的内角和吗?
生:90°乘4等于360°,在把360°除以2就等于180°(板书)
师:我们给这种验证方法娶个名字?(推算)
师:这个直角三角形可以用推算的方法验证,是不是所有的直角三角形都可以用这种方法推算呢?
(课件演示)
师:推算的验证方法是谁先发现的,我们也对他表示祝贺。
小结
师:这节课通过我们班同学共同合作,我们用了几种验证方法。
师:撕拼和折拼方法有什么相同点?(注意说话有说服力)
生:都是把三角形的三个角拼成一个平角。
师:为什么度量的方法会得到不同的结果?
师:可能是度量的时候有误差,如果准确测量结果就是180°(把不是180°的数据擦掉)
数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
6、解疑
为什么在一个三角形中不可有两个角是直角或两个角是钝角?
生:因为三角形的内角和是180°
反思:在活动中,我没有像过去那样告诉学生怎样去做,让学生做机械的操作员,也不是随意放开,让学生盲目地做,而是把放与引有机结合,鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。
三、应用三角形的内角和解决问题
我们就用这个结论来解决问题
1.看图求出未知角的度数。
180°-55°-65°180°-(55°+65°)
=125°-65°=180°-120°
=60°=60°
刚才是已知两个内角的度数,求另一个内角的度数。如果只告诉你一个内角的度数,你会求出另外两个内角的度数吗?如果一个内角的度数也不告诉你,你能知道三个内角的度数吗?
2、请说出下列每个三角形每个角的度数。
180°÷3=60°180°-96°=84°180°-90°-40=50°
84°÷2=42°90°-40°=50°
3、判断(请大家用手语来判断)
(1)一个三角形的三个内角度数是:80°、75°、24°。()
(2)大三角形比小三角形的内角和大。()
教师准备两个大小不一样角度一样的三角形
(3)两个小三角形拼成一个大三角形,大三角形的内角和是360°()
师:你能改正吗?
生:两个小的三角形拼成一个大四边形,四边形的内角和是360。
(准备两个三角形刚好可以拼成四边形)
师:小三角形的两个直角角已经不是大三角形的内角,要减去180°所以大三角形的内角和是180°
4、求四边形、五边形、六边形的内角和
下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?
图形
名称
三角形
四边形
五边形
六边形
有几个三角形
1
内角和
180°
如果要求10边形的内角和,你会求吗?你有什么发现?
四、回顾
这节课你有什么收获?我们是怎样研究三角形的内角和是180°?
师:这节课我们分别用度量、撕拼、折拼推算个的方法对猜想进行验证,最后运用三角形内角和是180°的知识解决问题。如果给你重新选择,你会选择什么方法验证?
我们用360度除以2推算出所有直角三角形的内角和是180度,你会应用直角三角形的内角和是180度,推算这个大锐角三角形的内角和吗?(课件)
(4)、一个锐角三角形、钝角三角形分成两个直角三角形。也可以推出锐角三角形的内角和是180°
板书
三角形内角和180°
猜想实验验证
度量180°179°181°182°183°
剪拼一个平角
折拼



