乘法分配律教学设计

时间:2026-01-06 19:42:09
乘法分配律教学设计

乘法分配律教学设计

作为一位不辞辛劳的人民教师,常常要根据教学需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。如何把教学设计做到重点突出呢?下面是小编帮大家整理的乘法分配律教学设计,欢迎阅读,希望大家能够喜欢。

乘法分配律教学设计1

教学内容:青岛版四年级下册第24-25页红点内容 信息窗2 第1课时

教学目标:

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:理解和掌握乘法分配律的推导过程。

教学难点:理解和掌握乘法分配律的推导过程。

教学准备:课件,卡片(课前发给学生)

教学过程:

一、拟定自学提纲

自主预习

1. 创设情境:(多媒体出示24页情境图)

教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

(学生可能提出 济青高速公路全长大约多少千米?

相遇时大巴车比中巴车多行多少千米?)

(教师把这两个问题板书在黑板上。)

教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

2. 出示学习目标:这节课的学习目标是:(多媒体出示)

(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

教师引导:有信心达到这两个目标吗?(有!)

老师的指导会对你们的学习有很大的帮助,请看自学指导:

3. 出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

4. 学生按自学指导自学,教师巡视,关注学困生。

二、汇报交流 评价质疑

调查学情:看完的同学请举手!看会的请放下。

1.小组交流:

学习中你有哪些收获、困惑和体会,请在小组内交流一下。

2.班内汇报:

师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设:

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2 110×2-90×2

=20×2 =220-180

=40(千米) =40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答:

举例验证:(125+12)×8 = 125×8+12×8

(40-4)×25 = 40×25-4×25

(8+16)×125 = 8×125+16×125

(80-8)×125 = 80×125-8×125

…… ……

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a± b) c=ac±bc)

三、抽象概括 总结提升

1.通过以上研究,你得到了什么结论?

课堂预设:

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为:

(a± b) c=ac±bc

2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?

课堂预设:

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

…… ……

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

3.在记忆这个规律时,应该注意什么?

【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。

课堂预设:

预设一:括号里的每一个数都要乘括号外的数。< ……此处隐藏25533个字……吧!

1.大显身手

出示“想想做做”第1题,让学生在书上填一填。

师:第2题你是怎么想的?

小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]

2.生活应用

(“想想做做”第3题)

小结:说说两种方法的联系。

3.巧妙运用

(“想想做做”第4题)(同桌一人做一组,做在练习本上)

谈话:每组两道算式有什么联系?哪一题计算比较简便?

现在你知道上课开始时为什么B组同学算得快吗?

小结:乘法分配律可以使计算简便。

4.明辨是非

我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?

王小明这样计算:

(3+2)×(34+36)

=5×70

=350(人)

①观察一下,你赞同王小明的算法吗?为什么?

②要用乘法分配律,要有什么条件?

5.巧猜字谜

猜一猜,等号后边是三个什么字?

人×(1+2+3)=

6.大胆猜想

如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?

学生小组交流猜想。

谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!

教师组织、引导学生总结得出:

(a-b)×c=a×c-b×c

小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!

【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】

四、回忆梳理知识,在反思中总结

今天这节课,你有什么收获?

五、布置作业:“想想做做”第5题。

乘法分配律教学设计15

教学目标:

1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

3、发挥学生主体作用,体验探究学习的快乐。

教学准备:课件、口算题、例题、练习题等。

教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

教学流程:

一、设疑导入。

生:可以使计算简便。

师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)。

二、探究发现。

1。猜想。

师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)。

师:这道题算得怎么不如刚才的快啊?

生:它和前面的题目不一样。

师:好,我们来看一下它与前面的题目有什么不同?

生:前面的题都是乘号,这道题既有乘号还有加号。

生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

生:(10+4)×25=10×25+4×25。

师:为什么这样算哪?

师:你是怎么知道的?你知道什么是乘法分配律吗?

生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)。

2。验证。

师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)。

师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)。

3。结论。

生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)。

师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

(a+b)×c=a×c+b×c。

师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

三、练习应用。

(生练习应用定律。)。

师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

四、总结。

师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)。

反思:

本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

一、主动探究,实现亲身经历和体验。

现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的`教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

二、多向互动,注重合作与交流。

在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

《乘法分配律教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式